3.1361 \(\int \frac{x^6}{1+x^6} \, dx\)

Optimal. Leaf size=81 \[ \frac{\log \left (x^2-\sqrt{3} x+1\right )}{4 \sqrt{3}}-\frac{\log \left (x^2+\sqrt{3} x+1\right )}{4 \sqrt{3}}+x+\frac{1}{6} \tan ^{-1}\left (\sqrt{3}-2 x\right )-\frac{1}{3} \tan ^{-1}(x)-\frac{1}{6} \tan ^{-1}\left (2 x+\sqrt{3}\right ) \]

[Out]

x + ArcTan[Sqrt[3] - 2*x]/6 - ArcTan[x]/3 - ArcTan[Sqrt[3] + 2*x]/6 + Log[1 - Sq
rt[3]*x + x^2]/(4*Sqrt[3]) - Log[1 + Sqrt[3]*x + x^2]/(4*Sqrt[3])

_______________________________________________________________________________________

Rubi [A]  time = 0.334236, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.636 \[ \frac{\log \left (x^2-\sqrt{3} x+1\right )}{4 \sqrt{3}}-\frac{\log \left (x^2+\sqrt{3} x+1\right )}{4 \sqrt{3}}+x+\frac{1}{6} \tan ^{-1}\left (\sqrt{3}-2 x\right )-\frac{1}{3} \tan ^{-1}(x)-\frac{1}{6} \tan ^{-1}\left (2 x+\sqrt{3}\right ) \]

Antiderivative was successfully verified.

[In]  Int[x^6/(1 + x^6),x]

[Out]

x + ArcTan[Sqrt[3] - 2*x]/6 - ArcTan[x]/3 - ArcTan[Sqrt[3] + 2*x]/6 + Log[1 - Sq
rt[3]*x + x^2]/(4*Sqrt[3]) - Log[1 + Sqrt[3]*x + x^2]/(4*Sqrt[3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 57.6371, size = 70, normalized size = 0.86 \[ x + \frac{\sqrt{3} \log{\left (x^{2} - \sqrt{3} x + 1 \right )}}{12} - \frac{\sqrt{3} \log{\left (x^{2} + \sqrt{3} x + 1 \right )}}{12} - \frac{\operatorname{atan}{\left (x \right )}}{3} - \frac{\operatorname{atan}{\left (2 x - \sqrt{3} \right )}}{6} - \frac{\operatorname{atan}{\left (2 x + \sqrt{3} \right )}}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(x**6+1),x)

[Out]

x + sqrt(3)*log(x**2 - sqrt(3)*x + 1)/12 - sqrt(3)*log(x**2 + sqrt(3)*x + 1)/12
- atan(x)/3 - atan(2*x - sqrt(3))/6 - atan(2*x + sqrt(3))/6

_______________________________________________________________________________________

Mathematica [A]  time = 0.0230964, size = 76, normalized size = 0.94 \[ \frac{1}{12} \left (\sqrt{3} \log \left (x^2-\sqrt{3} x+1\right )-\sqrt{3} \log \left (x^2+\sqrt{3} x+1\right )+12 x+2 \tan ^{-1}\left (\sqrt{3}-2 x\right )-4 \tan ^{-1}(x)-2 \tan ^{-1}\left (2 x+\sqrt{3}\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[x^6/(1 + x^6),x]

[Out]

(12*x + 2*ArcTan[Sqrt[3] - 2*x] - 4*ArcTan[x] - 2*ArcTan[Sqrt[3] + 2*x] + Sqrt[3
]*Log[1 - Sqrt[3]*x + x^2] - Sqrt[3]*Log[1 + Sqrt[3]*x + x^2])/12

_______________________________________________________________________________________

Maple [A]  time = 0.032, size = 62, normalized size = 0.8 \[ x-{\frac{\arctan \left ( x \right ) }{3}}-{\frac{\arctan \left ( 2\,x-\sqrt{3} \right ) }{6}}-{\frac{\arctan \left ( 2\,x+\sqrt{3} \right ) }{6}}+{\frac{\ln \left ( 1+{x}^{2}-x\sqrt{3} \right ) \sqrt{3}}{12}}-{\frac{\ln \left ( 1+{x}^{2}+x\sqrt{3} \right ) \sqrt{3}}{12}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(x^6+1),x)

[Out]

x-1/3*arctan(x)-1/6*arctan(2*x-3^(1/2))-1/6*arctan(2*x+3^(1/2))+1/12*ln(1+x^2-x*
3^(1/2))*3^(1/2)-1/12*ln(1+x^2+x*3^(1/2))*3^(1/2)

_______________________________________________________________________________________

Maxima [A]  time = 1.59198, size = 82, normalized size = 1.01 \[ -\frac{1}{12} \, \sqrt{3} \log \left (x^{2} + \sqrt{3} x + 1\right ) + \frac{1}{12} \, \sqrt{3} \log \left (x^{2} - \sqrt{3} x + 1\right ) + x - \frac{1}{6} \, \arctan \left (2 \, x + \sqrt{3}\right ) - \frac{1}{6} \, \arctan \left (2 \, x - \sqrt{3}\right ) - \frac{1}{3} \, \arctan \left (x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^6 + 1),x, algorithm="maxima")

[Out]

-1/12*sqrt(3)*log(x^2 + sqrt(3)*x + 1) + 1/12*sqrt(3)*log(x^2 - sqrt(3)*x + 1) +
 x - 1/6*arctan(2*x + sqrt(3)) - 1/6*arctan(2*x - sqrt(3)) - 1/3*arctan(x)

_______________________________________________________________________________________

Fricas [A]  time = 0.236685, size = 127, normalized size = 1.57 \[ -\frac{1}{12} \, \sqrt{3} \log \left (x^{2} + \sqrt{3} x + 1\right ) + \frac{1}{12} \, \sqrt{3} \log \left (x^{2} - \sqrt{3} x + 1\right ) + x - \frac{1}{3} \, \arctan \left (x\right ) + \frac{1}{3} \, \arctan \left (\frac{1}{2 \, x + \sqrt{3} + 2 \, \sqrt{x^{2} + \sqrt{3} x + 1}}\right ) + \frac{1}{3} \, \arctan \left (\frac{1}{2 \, x - \sqrt{3} + 2 \, \sqrt{x^{2} - \sqrt{3} x + 1}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^6 + 1),x, algorithm="fricas")

[Out]

-1/12*sqrt(3)*log(x^2 + sqrt(3)*x + 1) + 1/12*sqrt(3)*log(x^2 - sqrt(3)*x + 1) +
 x - 1/3*arctan(x) + 1/3*arctan(1/(2*x + sqrt(3) + 2*sqrt(x^2 + sqrt(3)*x + 1)))
 + 1/3*arctan(1/(2*x - sqrt(3) + 2*sqrt(x^2 - sqrt(3)*x + 1)))

_______________________________________________________________________________________

Sympy [A]  time = 0.653377, size = 70, normalized size = 0.86 \[ x + \frac{\sqrt{3} \log{\left (x^{2} - \sqrt{3} x + 1 \right )}}{12} - \frac{\sqrt{3} \log{\left (x^{2} + \sqrt{3} x + 1 \right )}}{12} - \frac{\operatorname{atan}{\left (x \right )}}{3} - \frac{\operatorname{atan}{\left (2 x - \sqrt{3} \right )}}{6} - \frac{\operatorname{atan}{\left (2 x + \sqrt{3} \right )}}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(x**6+1),x)

[Out]

x + sqrt(3)*log(x**2 - sqrt(3)*x + 1)/12 - sqrt(3)*log(x**2 + sqrt(3)*x + 1)/12
- atan(x)/3 - atan(2*x - sqrt(3))/6 - atan(2*x + sqrt(3))/6

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{x^{6} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^6 + 1),x, algorithm="giac")

[Out]

integrate(x^6/(x^6 + 1), x)